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compounds resulting from the reaction of a series of organo-
metallic reagents with the a - H 3 P W n 0 3 9 4 _ anion and other 
polyoxoanions. Preliminary results indicate that the compound 
reported here is only the first representative of a large family 
of polyoxoanion supported organometallic compounds. 
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Multiple Metal-Carbon Bonds. 12.1 Tungsten and 
Molybdenum Neopentylidyne and Some Tungsten 
Neopentylidene Complexes 

Sir: 

The formation of alkylidene ( = C H R ) and alkylidyne 
( = C R ) complexes of N b and Ta by a-hydrogen abstraction, 
and acceleration of that process by adding small, basic tertiary 
phosphines, is now well established1 (R = CMe3 or C6H5). A 
significant question is whether any of these principles can be 
extended to group 4 or 6 metals. Establishing the latter is 
probably more important owing to the suspected role of W and 
Mo alkylidene complexes in the olefin metathesis reaction.2 

We present results here which demonstrate that this is possible. 
The rather extraordinary Mo and W complexes formed 
thereby are thermally stable, well-behaved, and easily char­
acterized by standard techniques. 

A clear, brilliant yellow solution is obtained when 6 mol of 
LiCH 2 CMe 3 is added to WCl6 in ether at - 7 8 0 C . When this 

is warmed to 25 0 C, the color darkens to red-brown. Removing 
the solvent in vacuo and subliming the residue at 70 0 C (1 /u) 
gives yellow crystals of air-sensitive (Me3CCH2) 3 W=CCMe3 
(1) in 25% yield (eq 1) (Calcd for WC20H42: C, 51.51; H, 9.07. 
Found: C, 51.32; H, 8.90.). A similar reaction at 25 0C also 
gives 1 in 25% yield. The analogous -78 0C reaction between 
M0CI5 and 5 mol of LiCH2CMe3 gives pale yellow, air- and 
light-sensitive (Me3CCH2)3Mo=CCMe3 (2, 15% yield). 
Since the first mole of LiCH2CMe3 at 25 0C reduces W(VI) 
to W(V),3 each reaction is not a straightforward double a 
abstraction (neopentyl -* neopentylidene —* neopentyli­
dyne1-4) in a M(VI) alkyl complex. The tacky residue which 
remains after subliming out 1 or 2 gives broad, uninterpretable 
1H and 13C NMR spectra. The residue is extremely soluble in 
pentane and no crystalline product could be obtained, even at 
- 7 8 0 C . 

MClx + XLiCH2CMe3 

ether 
-*(Me3CCH2)3M=CCMe3 (1 

1, M = W;x = 6 
2, M = Mo; x = 5 

The molecular weight of 2 in cyclohexane is that expected 
for a dimer, while that of 1 is ~ 7 5 % of that expected for the 
dimer.5 The mass spectra of 1 and 2 show only the monomeric 
ion.6 These data suggest that 1 and 2 are dimers which disso­
ciate readily. (Further evidence for this behavior is the reaction 
of 1 with PMe 3 to give monomeric products.) The two most 
reasonable formulations, A and B, are based on known ex-

CMe1 

me,CCK2\MsC)yM(CE.£Me:>)s 

CMe1 

A 
CMe3 

(Me3CCHo)3M- —M(CH2CMe:))B 

CMe3 

B 
amples containing each type of M C 2 M core. We favor A (or 
a distorted version thereof7) since two related molecules, 
[ N b ( C H 2 S i M e 3 ) 2 ( C S i M e 3 ) ] 2

7 b and [ W ( C H 2 S i M e 3 ) 2 -
(CSiMe3)] 2

7c'8 are planar, since we have not been able to add 
acetylenes to ( M e 3 C C H 2 ) 3 M o = M o (CH 2 CMe 3 ) 3

9 to give 
B-type molecules,10-11 and since the 13C signal for the bridging 
carbon in M o 2 C p 2 ( C O ) 4 ( M e C = C M e ) (a B-type molecule) 
is far upfield of where those in 1, 2, [W(CH 2 SiMe 3 ) 2 -
(CSiMe3)J2, and [Ta(CH2SiMe3) 2(CSiMe3)] 2 are found (see 
below).12 The metal in known B-type molecules is also in a 
lower than maximum oxidation state, while that in known 
A-type molecules is in the maximum formal oxidation state. 

The gated decoupled 13C N M R spectrum of 1 in C 6 D 6 
shows only one set of six resonances.13 Therefore, either 
monomer-dimer interconversion is fast on the 13C N M R time 
scale or > ~ 9 5 % of one is present. The neopentylidyne C a 
resonance is found at 317 ppm, at the high end of the range for 
Ca in terminal alkylidyne complexes of several types4 '14 and 
bridging alkylidyne a-carbon atoms in [ W ( C H 2 S i M e 3 ^ -
(CSiMe 3 ) ] 2 (353 ppm) 8 b and [Ta(CH2SiMe-S)2(CSiMe3)I2 
(404 ppm).8 b Its coupling to 183W ( / c w = 230 ± 5 Hz) is 
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slightly larger than in Fischer's carbyne complexes14 and much 
larger than /cw for the neopentyl Ca in 1 (89 Hz). (Note that 
neopentylidene Ca-W coupling constants are ~120 Hz (see 
below).) The relative size of the W satellites for the neo-
pentylidyne Ca resonance is approximately the same as for the 
neopentyl Ca resonance, consistent with (but not proving15) 
a monomer ** dimer interconversion rapid enough to "de­
couple" the second W atom in the dimer. The 13C NMR 
spectrum of 2 is analogous.16 

(Me3CCH2^W=CCMe3 reacts rapidly (5 min) and 
quantitatively with neat PMe3 in a sealed tube at 100 0C. (No 
further change occurs in 1 day.) One mole of neopentane 
evolves (GLC) and yellow crystals of 3 are left behind on 
removing PMe3 in vacuo. 3 is soluble in pentane, crystallizes 
readily, and is a monomer in cyclohexane (calcd 546, found 
530). The 13C NMR spectrum of 3 in CeD617 shows a neo­
pentyl ligand (S(C0) 53.5, JcH = 113, /CP = 7, Jew = 80 Hz), 
a neopentylidene ligand (<5(Ca) 286, /CH = 90, Jc? = 14, Jew 
= 120 Hz), a neopentylidyne ligand (<5(Ca) 316, /CP = 14, Jew 
= 210 Hz), and two equivalent PMe3 ligands (confirmed by 
31P NMR). The neopentylidene a proton is found at r 1.85 (t, 
/ H P = 2.9 Hz) and the neopentyl a proton at T 8.78 (t, 7HP = 

18 Hz) in the 'H NMR spectrum.18 Neither spectrum changes 
on heating the sample to 80 0C; evidently the three hydro­
carbon ligands do not interconvert on the NMR time scale (cf. 
AG* = 28 kcal for a-hydrogen scrambling in 
Ta(CH2CMe3)3(CHCMe3)

19). The mass spectrum of 3 is 
consistent with its formulation but is not simple.20 3 begins to 
decompose at ~110 0C in toluene and does not sublime without 
decomposition. Since the reaction of 1 with PMe2Ph proceeds 
much more slowly than the reaction with PMe3, we suggest 
that phosphine coordinates to the (Me3CCH2)3M=CCMe3 
monomer to give a five-coordinate species from which neo­
pentane is lost more readily (cf. the preparation of 
M(CHCMe3)2(CH2CMe3)(PMe3)2 from M(CH2CMe3)3-
(CHCMe3); M = Nb or Ta1). 

The structure of W(CCMe3)(CHCMe3)(CH2CMe3)-
(PMe3)2 is believed to be analogous to those of 
M(CHCMe3)2(CH2CMe3)(PMe3)2

1 (M = Nb or Ta) since 
the phosphine ligands are equivalent in each case and the ne­
opentyl Ha-P coupling constants are identical (18 Hz). The 
proposed trigonal bipyramid (eq 2; all CsH,, ligands lie in the 

(Me1CCH îW=CCMe;, + 2PMe, —* CMe4 

PMe, 

\+* 
+ x-y^+

 (2) 

PMe, 
3 

pseudotrigonal plane) is based on preliminary X-ray data for 
Ta(CHCMe3)2(mesityl)(PMe3)2 which suggest it has axial 
PMe3 ligands.21 

The reaction of 1 with 1 mol of dmpe (Me2PCH2CH2PMe2) 
in toluene (1 h, 110 0C) gives neopentane and a monomeric 
complex22 whose properties resemble those of 3. Its 13Cj1H) 
spectrum23 shows a neopentyl (6 54.7), a neopentylidene (256), 
and a neopentylidyne (296) ligand, but its structure must be 
different since dmpe can only span sites 90° apart. If we pos­
tulate that 7r-bonding C5H., ligands (y = 10 or 9) prefer 
equatorial sites, then a likely structure is 4 (eq 3), 

On further heating with dmpe, 4 (but not 3) loses 1 mol of 
trans-di-tert-butylethylene (identified by 1H and 13C NMR 
and GLC) and gives yellow, crystalline W(dmpe)2(C5Hi0) 
quantitatively. Although the precise nature of this species has 
so far eluded us,24 we can at least propose that a tris(neo-
pentylidene) intermediate is accessible, but only from 4, not 

Me2P-CH, 
SCH, 

i 

(Me3CCH2)SW=CCMe3 + dmpe —• ^=W4. * (3) 

^ * 

X 
4 

from 3, and that two neopentylidene ligands in this interme­
diate combine intramolecularly to form the olefin which is then 
displaced by dmpe. 

Analogous reactions of 2 are comparatively sluggish and 
compounds analogous to 3 and 4 have not been observed. 
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Relative Extinction Coefficient Measurements 
for Naked Silver Atom Clusters, A g j ^ , 
by Photoaggregation Techniques 

Sir: 

Ligand-free molecular clusters containing only several 
transition metal atoms are currently becoming accessible for 
detailed spectroscopic and chemical studies.1 Naked molecular 
clusters are of considerable interest in a wide area which in­
cludes both homogeneous and heterogeneous catalysis. In 
particular, one may think in terms of modeling the active 
centers of highly dispersed heterogeneous catalysts, using very 
small metal atom clusters of variable but precisely defined size. 
Another attractive proposition is that the electronic structure 
of metal atom cluster complexes, which are often active ho­
mogeneous catalysts, may be elucidated through combined 
experimental and theoretical studies of the corresponding 
metal atom framework. 

We have reported a cryochemical preparative route to 
transition metal atom clusters, involving photoinduced diffu­
sion and aggregation of matrix-isolated metal atoms, moni­
tored by ultraviolet-visible absorption spectroscopy.2 In this 
communication we report an application of this technique to 
the measurement of molar extinction coefficients, relative to 
atomic species, for diatomic and triatomic silver. 

Extinction coefficient information is of fundamental im­
portance in quantitative studies of the chemistry and photo­
chemistry of transition metal atom clusters, and in the analysis 
of metal atom recombination kinetics. Relative extinction 
coefficients for transition metal diatomic molecules, «M2 /«M, 
as determined by quantitative metal atom deposition studies, 
have been reported.3 However, we would suggest that the 
controlled photoaggregation technique allows for a more 
convenient and accurate evaluation of these quantities. 
Moreover, an extension of this technique to higher clusters is 
also possible. 

H n 

250 300 3 5 0 450 nm 

Figure 1. UV-visible spectra of Agi,2,3/Ar mixtures (Ag/Ar =a 1/103) 
at 12 K. Note the growth of Ag2 and Ag3 clusters and loss of Ag atoms as 
a result of 305-nm Ag atom excitation. Spectra A, B, and C represent ir­
radiation times of 0, 1, and 4 min, respectively. 

l o g ( t ) 

Figure 2. Kinetic plots showing a linear dependence on irradiation time 
(305 nm) of the absorbance ratios Ag2

263nm/Ag300nm and Ag2
390nm/ 

Ag300nm (O) and a linear dependence on the square of irradiation time of 
the absorbance ratios Ag3 n/Ag300nm and Ag3 7 Ag31 ' ( • ) , a s 
predicted from the simple kinetic analysis. The quantities Xn were chosen 
in order to shift the Ag2/Ag vs. / and Ag3/Ag vs. t2 plots through the or­
igin. Details will be described in the full paper. 

The cryophotoclustering technique is illustrated for Ag 
atoms in Figure 1. Kinetic studies of the clustering process are 
now in progress and the results will be described in detail in a 
forthcoming publication. Preliminary results have indicated 
that, under certain conditions, the rates of formation of di­
atomic and triatomic silver may usefully be approximated by 
simple second-order kinetics. A simple analysis predicts that 
the slope of a log (Ag,,/Ag) vs. log (t) plot, where Ag„ and Ag 
represent absorbances and t represents the irradiation time, 
should have a value of 1.0 for n = 2 and 2.0 for n = 3. These 
plots are shown in Figure 2. The observed slopes, 0.9/1.0 and 
2.1/2,2 support our Ag2 and Ag3 assignments, which are in­
dicated in Figure 1. These assignments correlate exactly with 
earlier assignments based on Ag atom concentration experi­
ments.23 

Simple mass-balance considerations lead to the following 
expression which relates the decrease in an atomic absorption 
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